If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-28x-240=0
a = 1; b = -28; c = -240;
Δ = b2-4ac
Δ = -282-4·1·(-240)
Δ = 1744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1744}=\sqrt{16*109}=\sqrt{16}*\sqrt{109}=4\sqrt{109}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-4\sqrt{109}}{2*1}=\frac{28-4\sqrt{109}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+4\sqrt{109}}{2*1}=\frac{28+4\sqrt{109}}{2} $
| 9x=3×^3 | | -3/5=r/24 | | 1-2n+55=6 | | 5x+7=4(x+8)-3 | | 27^3x-3=9 | | 4n+7n=76 | | 96+82+x+(x+5)+(x-9)=540 | | x+3=6x-2x | | 21x^2-28x+7=0 | | 13t+2=8 | | Z-13+z+10=360 | | -11+3b=7 | | 4x-1+3x=5x+4+105 | | r+11=-21 | | -7x+11=x+75. | | 5r-3=3r+5 | | 2x^2+3x-243=0 | | 6c-11=2c+59 | | x+2.5x=18 | | m^2+3-12m=0 | | r-11=-21 | | 29-2(3-5w)=13 | | -4y+2=-2= | | 6x^2=5x=6 | | 3(2x-14)=-3(-13+x | | 3w-4=5w-2 | | 7x-2+2x=5(x+6) | | 8(4+x)+x=8+x | | 4x+3(x-2)=-10+5x | | 12/3+3x=4/5x+15 | | x=1+22 | | 3x+10+2x=2(x+10) |